Abstract

While pressure sensitive paint (PSP) technique has been widely used to measure adiabatic film cooling effectiveness distributions on the surfaces of interest based on a mass transfer analog to traditional thermal-based measurements, very little can be found in literature to provide a comprehensive analysis on the uncertainty levels of the measured film cooling effectiveness distributions derived from PSP measurements. In the present study, a detailed analysis is performed to evaluate the effects of various associated uncertainties in the PSP measurements on the measured film cooling effectiveness distributions over the surfaces of interest. The experimental study is conducted in a low-speed wind tunnel under an isothermal condition. While airflow is used to represent the “hot” mainstream flow, an oxygen-free gas, i.e., carbon dioxide (CO2) gas with a density ratio of DR = 1.5 for the present study, is supplied to simulate the “coolant” stream for the PSP measurements to map the adiabatic film cooling effectiveness distribution over a flat test plate with an array of five cylindrical coolant holes at a span-wise spacing of three diameters center-to-center. A comprehensive analysis was carried out with focus on the measurement uncertainty and process uncertainty for the PSP measurements to determine the film cooling effectiveness distributions over the surface of interest. The final analysis indicates that the total uncertainty in the adiabatic film cooling effectiveness measurements by using the PSP technique depends strongly on the local behavior of the mixing process between the mainstream and coolant flows. The measurement uncertainty is estimated as high as 5% at the near field behind the coolant holes. In the far field away from the coolant holes, the total measurement uncertainty is found to be more uniform throughout the measurement domain and generally lower than those in the near field at about 3%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call