Abstract

The bulge test has been utilized extensively in determining the mechanical properties of thin film materials. We develop a bulge-test system that consists of three main components, including an optical system, a loading system, and a control system. A telecentric lens is adopted as an imaging camera in an optical system to provide high imaging quality along with a constant angle of view across the entire field of view. The out-of-plane deformation is obtained by projecting a sinusoidal fringe pattern onto a specimen surface and analyzing recorded images with a digital image correlation algorithm. A least-squares polynomial fitting is presented to solve the problem that the out-of-plane calibration coefficient is not a constant. Experiments were performed to validate the availability and reliability of this proposed bulge-test system in the measurement of a dynamic microscopic deformation of membrane. The measuring range of deformation is from several microns to hundreds of microns with an accuracy of 0.6 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.