Abstract

Abstract To support a rational and efficient use of electrical energy in residential and industrial environments, Non-Intrusive Load Monitoring (NILM) provides several techniques to identify state and power consumption profiles of connected appliances. Design requirements for such systems include a low hardware and installations costs for residential, reliability and high-availability for industrial purposes, while keeping invasive interventions into the electrical infrastructure to a minimum. This work introduces a reference hardware setup that allows an in depth analysis of electrical energy consumption in industrial environments. To identify appliances and their consumption profile, appropriate identification algorithms are developed by the NILM community. To enable an evaluation of these algorithms on industrial appliances, we introduce the Laboratory-measured IndustriaL Appliance Characteristics (LILAC) dataset: 1302 measurements from one, two, and three concurrently running appliances of 15 appliance types, measured with the introduced testbed. To allow in-depth appliance consumption analysis, measurements were carried out with a sampling rate of 50 kHz and 16-bit amplitude resolution for voltage and current signals. We show in experiments that signal signatures, contained in the measurement data, allows one to distinguish the single measured electrical appliances with a baseline machine learning approach of nearly 100 % accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.