Abstract
Different sets of measurements carry different amounts of information about the root causes of quality problems in machining. The selection of measurements in multi-station machining systems is currently a slow and error-prone process based on expert human knowledge. In this paper, we propose systematic procedures for synthesizing measurement schemes that carry the most information about the root causes of dimensional machining errors. The amount of root cause information conveyed by a given set of measurements was assessed using the recently introduced formal methods for quantitative characterization of measurement schemes in multi-station machining systems. The newly proposed measurement scheme synthesis procedures were applied to devising measurement schemes in an automotive cylinder head machining process. It was observed that the measurement scheme synthesis procedure based on a genetic algorithm robustly outperformed the synthesis procedures based on the heuristics of successive measurement removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.