Abstract
Abstract. Secondary organic aerosol (SOA) plays an important role in particulate air pollution, but its formation mechanism is still not fully understood. The chemical composition of non-refractory particulate matter with a diameter ≤2.5 µm (NR-PM2.5), OA sources, and SOA formation mechanisms were investigated in urban Xi'an during winter 2018. The fractional contribution of SOA to total OA mass (58 %) was larger than primary OA (POA, 42 %). Biomass-burning-influenced oxygenated OA (OOA-BB) was resolved in urban Xi'an and was formed from the photochemical oxidation and aging of biomass burning OA (BBOA). The formation of OOA-BB was more favorable on days with a larger OA fraction and higher BBOA concentration. In comparison, the aqueous-phase processed oxygenated OA (aq-OOA) was more dependent on the secondary inorganic aerosol (SIA) content and aerosol liquid water content (ALWC), and it showed a large increase (to 50 % of OA) during SIA-enhanced periods. Further van Krevelen (VK) diagram analysis suggests that the addition of carboxylic acid groups with fragmentation dominated OA aging on reference days, while the increased aq-OOA contributions during SIA-enhanced periods likely reflect OA evolution due to the addition of alcohol or peroxide groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.