Abstract

Measurement error modeling is crucial to any assay method. Realistic error models prioritize efforts to reduce key error components and provide a way to estimate total (random and systematic) measurement error variances. This paper uses multi-laboratory data to estimate random error and systematic error variances for seven analytical chemistry destructive assay methods for five analytes (Gallium, Iron, Silicon, Plutonium, and Uranium). Because these variance estimates are based on multiple-component error models, strategies are described for choosing and then fitting error models that allow for lab-to-lab variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.