Abstract

Experimental measurement study on the structure of the Reynolds stress and turbulence spectrum for wind flows over a two-dimensional escarpment with mild upwind slope (slope angle θ = 15°) were performed in the wind tunnel. The Quadrant analysis was applied to analyze the experimental data and yield the structure of the Reynolds stress. In according to the quadrant analysis, the Reynolds stress is composed of four events of the stress components, i.e. outward interaction, ejection (low-speed fluid upward), inward interaction, and sweep (high-speed fluid downward). Measured results show that: (1) Measurements of the structure of the Reynolds stress reveal that both the sweep and ejection events are the major contributors to the Reynolds stress for flow around the two dimensional escarpment with mild upwind slope. (2) The contributions to the Reynolds stress made by ejection events and sweep events are almost the same at heights Z/Zref greater than 0.2 for different downstream distances along the mild slope of escarpment. Here Zref is the turbulent boundary layer thickness. When flow reached the top of the slope of escarpment, stress fractions of ejection event and sweep event, S2 and S4 increased significantly. (3) The he turbulent energy spectrum distribution was not found very dominant spectrum peak as winds flow over the mild upwind slope and top surface of escarpment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.