Abstract

When a two-dimensional (2D) imaging system is used to visualize particle motion in a 3D gas–solid flow, the particle rotation speed was found extremely difficult to be accurately measured due to the fact that the direction of rotation axis was usually random and hard to be distinguished. The paper presents a method to calculate the particle rotation speed from particle images based on the identification of its rotation axis using two or more characteristic points on its surface. The idea was analyzed and realized in a mathematical way and based on which a calculation program was given. The measurement method was verified with an experiment using a small sphere with known rotation axis and rotation speed. The effects of several factors, including the direction of the particle rotation axis, the particle image resolution, the types and positions of characteristic points, etc., on the measurement error are discussed. The error is found to be acceptable for most cases. The measurement method was finally applied to those small glass beads in a real 3D gas–solid flow inside a cold circulating fluidized bed (CFB) riser, which indicates that the problems of 2D imaging system applying to 3D particulate system could be solved by using this mathematical method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call