Abstract

Spatial heterodyne spectroscopy (SHS) has been successfully applied to measure variations in water vapor pressure in the lab. An imaging system is combined with a monolithic field-widened SHS to observe a white-light source through a 1m length water vapor cell that is designed to produce predictable variations in the water vapor pressure. The performance of the spectrometer design is examined by comparing spectra simulated using a radiative transfer model to observed spectra at several cell pressures. The intended application of the instrument to vertically resolve the water vapor profile in the upper troposphere and lower stratosphere using limb-scattered radiation in a vibrational band of water (1363-1366nm) is also introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.