Abstract

There is currently a need for experimental techniques to assay the biophysical response (water transport or intracellular ice formation, IIF) during freezing in the cells of whole tissue slices. These data are important in understanding and optimizing biomedical applications of freezing, particularly in cryosurgery. This study presents a new technique using a Differential Scanning Calorimeter (DSC) to obtain dynamic and quantitative water transport data in whole tissue slices during freezing. Sprague-Dawley rat liver tissue was chosen as our model system. The DSC was used to monitor quantitatively the heat released by water transported from the unfrozen cell cytoplasm to the partially frozen vascular/extracellular space at 5 degrees C/min. This technique was previously described for use in a single cell suspension system (Devireddy, et al. 1998). A model of water transport was fit to the DSC data using a nonlinear regression curve-fitting technique, which assumes that the rat liver tissue behaves as a two-compartment Krogh cylinder model. The biophysical parameters of water transport for rat liver tissue at 5 degrees C/min were obtained as Lpg = 3.16 x 10(-13) m3/Ns (1.9 microns/min-atm), ELp = 265 kJ/mole (63.4 kcal/mole), respectively. These results compare favorably to water transport parameters in whole liver tissue reported in the first part of this study obtained using a freeze substitution (FS) microscopy technique (Pazhayannur and Bischof, 1997). The DSC technique is shown to be a fast, quantitative, and reproducible technique to measure dynamic water transport in tissue systems. However, there are several limitations to the DSC technique: (a) a priori knowledge that the biophysical response is in fact water transport, (b) the technique cannot be used due to machine limitations at cooling rates greater than 40 degrees C/min, and (c) the tissue geometric dimensions (the Krogh model dimensions) and the osmotically inactive cell volumes Vb, must be determined by low-temperature microscopy techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.