Abstract

A mechanical model of the human trachea is investigated experimentally. A modified version of an earlier model, it consists of a square sectioned rigid tube in which part of one wall is removed, and replaced by a prestretched flat latex membrane. Air is drawn from atmosphere through an inlet into the rigid upstream tube; it then flows through the flexible section and finally through a rigid section into a plenum chamber where suction is applied. As the membrane collapses in response to flow, the transmural pressure and deflection are measured at the mid-point. These values are used in conjunction with a finite deformation membrane wall theory to determine the elastic constant in a nonlinear material constitutive equation. This equation is used to predict the tube law. Results show that the flow limits at the long wave speed predicted by this law. Thus it behaves as a conventional collapsible tube while having the advantage of a rational wall model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.