Abstract

This study deals with the application of kurtosis and skewness based approximate and detailed coefficients in walking speed measurement. Gait data (force information of foot and positional information of ankle) are gathered through sensors during level walking on motorised treadmill of normal individuals at various speeds and features are extracted from the data using discrete wavelet tools, namely kurtosis of approximate coefficients, kurtosis of detailed coefficients, skewness of approximate coefficients, and skewness of detailed coefficients. The features corresponding to the different discrete wavelet transformation levels are analysed and results are demonstrated. Specific relations have been found between walking speeds and those parameters, where from optimisation has been done with respect to a parameter, type of sensors, and number of sensors. Finally, an algorithm is proposed accordingly for walking speed measurement using the gait data and subsequently validated through experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.