Abstract

This research activity regards the development of a sensor based on a Sansevieria cylindrica plant for the measurement of visible radiation. The proposed solution, based on the adoption of a soil-plant system as a chemo-electrical transducer, goes beyond “classical” silicon-based approaches that are not biodegradable nor eco-friendly and that produce CO2 from the production step to the disposal phase. It is worth noting that no toxicity can be associated with plants and, due to the natural process of photosynthesis, these systems, used as living sensors, are even able to absorb carbon dioxide from the environment. The working principle of the proposed device based on the metabolic processes of the natural organisms present in the living system, soil and plant, as a function of visible radiation will be presented here. Particular emphasis will be also given to the analysis of the visible radiation spectrum, the metrological characterization, the performance of the device, and the analyses in terms of insensitivity to other external physical quantities. The obtained results evince the suitability of the proposed device which presents the prerogative of being environmentally friendly, self-generating, battery-less, simple, mimetic, low-cost, non-toxic, and biodegradable. The aforementioned features pave the road for a disruptive technological approach for an ecological transition which can impact the variegated applied field, including in the security, cultural heritage, smart home, and smart agriculture aspects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call