Abstract
The measurement of vibrational energy flow is an important tool in understanding the vibrational behaviour of structures. In the past, because of transducer constraints, the measurement of vibrational energy flow was mostly restricted to single point measurements. However, recent developments in advanced laser measurement techniques, such as electronic speckle pattern interferometry (ESPI), have gained interest in applying two-dimensional, multi-point measurement techniques to the estimation of vibrational energy flow. This paper addresses the measurement of vibrational energy flow in a plate by using an ESPI based vibrational energy flow measurement technique. A radially symmetric bending wave plate vibration model is introduced and theoretical expressions for energy-based quantities are derived. To assess the accuracy of the measurement method, these theoretical quantities are compared to synthetic results derived from the ESPI energy flow measurement technique. The ESPI measurement technique is also applied to an experimental ‘infinite’ plate. Thus, a specially designed experimental apparatus was constructed so as to minimise undesired wave reflections in the plate and, thus, achieve a high energy flow boundary crossing at the edges of the plate. To reduce the effect of optical noise contamination on the ESPI measured out-of-plane plate displacement data, optimal filters were applied prior to the vibrational energy flow computation. To appraise the accuracy of the experimental method, measured vibrational power on the plate is compared with measured vibrational input power. A difference of less than 1dB between both quantities indicates that vibrational energy flow within a rectangular plate that contains radially symmetric wave propagation can be measured to a good degree of accuracy if appropriate filtering is applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.