Abstract
Changes in O2 tension such as those associated with hypoxic ischemia or hyperoxia may potentially modulate purine nucleotide turnover and production of associated catabolites. We used an isolated perfused rat lung preparation to evaluate the effect of O2 tension on pulmonary uric acid production. Three O2 concentrations (2 1%, normoxia; 95%, hyperoxia; 0%, hypoxia) were utilized for both pulmonary ventilation and equilibration of recirculating perfusate. All gas mixtures contained 5% CO2 and were balanced with N2. We used Certified Virus Free Sprague-Dawley male rats weighting 250-300 g, four to five rats in each exposure regimen. After a 10-min equilibration period, we measured uric acid levels at 0 and 60 min in lung perfusate and at 60 min in lung tissue. After 60 min of ventilation/perfusion, we observed significant uric acid accumulation in both lung tissue (25-60%) and perfusate (8- to 10-fold) for all three O2 regimens. However, hypoxia produced substantially greater net uric acid concentrations (net the difference between zero and 60 min) than either normoxia or hyperoxia (1.5-fold in lung tissue, and 2-fold in perfusate, respectively). The data suggest that pulmonary hypoxia results in greater purine catabolism leading to increased uric acid production. Vascular space uric acid, as measured in the recirculating perfusate, was proportional to lung weight changes (r = 0.99) with hypoxia exhibiting the greatest values, possibly reflecting a linkage between tissue perturbation and uric acid release. Thus, measurement of uric acid may serve as a useful marker of adenine nucleotide turnover and lung injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.