Abstract

The flow channel of the fluids in the nuclear reactor core and the heat exchanger is relatively small. In order to understand the two-phase flow phenomena in the narrow channel, many interesting studies have been carried out, for example, mini capillaries (Wong, et al., 1995, Han & Shikazono, 2009), rectangular channels with small gap (Mishima, et al., 1993, Xu, et al., 1999, Hibiki & Mishima, 2001) and rod bundles with tight-lattice geometry (Tamai et al., 2006, Sadatomi et al., 2007, Kawahara et al., 2008). Especially, a triangle tight-lattice rod bundle has been adopted as a fuel rod configuration in high conversion boiling water reactor (Iwamura et al., 2006, Uchikawa et al., 2007, Fukaya et al., 2009). This has a narrow gap of about 1mm in the coolant channel. Therefore, two-phase flow in the tight-lattice bundle or narrow channel should be clarified for thermal-hydraulic analysis of high conversion reactor. In the past several years, the acquisition of experimental data and the modelling of the flow in tight-lattice rod bundle have been done. Tamai et al. (2006) evaluated the effect of the gap width and the power profile from the pressure drop measured in tight-lattice 37 rod bundles. Sadatomi et al. (2007) studied the void fraction characteristics in double subchannels with tight-lattice array and the data was compared with some correlations and subchannel codes. Furthermore, their group estimated the wall and the interfacial friction forces from the measured void fraction and pressure drop using the same subchannel (Kawahara et al., 2008). However, the advanced measurement techniques of the spatio-temporal phase distribution and velocity field are required for the high accurate analysis of the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.