Abstract

The development of the transitional boundary layers on a flat plate in uniform and non-uniform incoming flows was experimentally investigated. The mean velocity profiles and the wall shear stresses on a flat plate were measured in the wakes which were generated by circular cylinders and a flat plate ahead of the test plate. A computational Preston tube method (CPM) originally proposed by Nitsche et al. (1983) was adopted and refined to measure the skin friction coefficients in the transitional boundary layer. The CPM was verified as a useful tool to measure the skin-friction over the transitional boundary layer with reasonable accuracy. As the turbulence level in the wakes increased, the starting and ending points of the transition moved progressively upstream. For the same turbulence intensities, the transition was delayed with increase of the length scale. The skin-friction coefficients at the downstream stations in the wake flow were considerably and consistently smaller than the values in the equilibrium turbulent boundary layer of the uniform flow. The transition length for the cases of the plate-wake were shorter than those for the cases of the cylinder-wake as well as the uniform flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call