Abstract

In this work, a new experimental methodology for analyzing the drop impact response is assessed using a pair of high-speed digital cameras and 3D digital image correlation software. Two different test boards are subjected to Joint Electron Device Engineering Council (JEDEC) standard free-fall impact conditions of half-sine pulse of 1500 G in magnitude and 0.5 ms in duration. The drop is monitored using a pair of synchronized high-speed cameras at a rate of up to 15,000 frames per second. The acquired images are subsequently analyzed to give full-field dynamic deformation, shape, and strain over the entire board during and after impact. To validate this new methodology for analyzing the impact response, the in-plane strain as well as the out-of-plane acceleration at selected locations were measured simultaneously during the drop using strain gauge and accelerometers and were compared with those obtained using high-speed cameras and 3D digital image correlation presented in this paper. Comparison reveals excellent correlation of the transient behavior of the board during impact and confirms the feasibility of using the full-field measurement technique used in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call