Abstract

Total reflection X-ray fluorescence spectroscopy (TXRF) has been used in combination with synchrotron radiation in order to determine detection limits and lowest limits of concentration of trace elements in metal matrices. Two applications on irradiated material are described, where the TXRF method has some advantages, as compared to other detection methods, because only few micrograms of material is needed for the measurements. The first application is devoted to radiation damage studies on first wall material of future fusion reactors. Therefore, metal foils were irradiated with 590 MeV protons at PSI and the transmutational elements produced in the foils were measured. The second application is the assessment of radiation damage of core components in a nuclear power plant, e.g. the reactor pressure vessel. This is performed by the determination of the fast neutron fluence on the components using an activation reaction of 93Nb which is a trace element in most reactor steels. Detection limits of a few picograms have been found in the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.