Abstract

Multiple diameter single fiber reflectance (MDSFR) measurements of turbid media can be used to determine the reduced scattering coefficient (μ′s) and a parameter that characterizes the phase function (γ). The MDSFR method utilizes a semi-empirical model that expresses the collected single fiber reflectance intensity as a function of fiber diameter (dfiber), μ′s, and γ. This study investigated the sensitivity of the MDSFR estimates of μ′s and γ to the choice of fiber diameters and spectral information incorporated into the fitting procedure. The fit algorithm was tested using Monte Carlo simulations of single fiber reflectance intensities that investigated biologically relevant ranges of scattering properties (μ′s ∈ [0.4 – 4]mm−1) and phase functions (γ ∈ [1.4 – 1.9]) and for multiple fiber diameters (dfiber ∈ [0.2 – 1.5] mm). MDSFR analysis yielded accurate estimates of μ′s and γ over the wide range of scattering combinations; parameter accuracy was shown to be sensitive to the range of fiber diameters included in the analysis, but not to the number of intermediate fibers. Moreover, accurate parameter estimates were obtained without a priori knowledge about the spectral shape of γ. Observations were used to develop heuristic guidelines for the design of clinically applicable MDSFR probes.

Highlights

  • Reflectance spectroscopy is a non-invasive method that is widely used to measure tissue optical properties

  • Multiple diameter single fiber reflectance (MDSFR) provides a method to accurately determine both μs′(λ ) and the parameter characterized by the first two moments of the phase function (PF), γ(λ ), within a turbid medium; the approach was shown to be valid over a broad range of optical properties that are representative of biological tissue

  • Results presented in this study identified the sensitivity of MDSFR estimates to the range of optically sampled μs′d fiber, and the insensitivity of model estimates to the quantity of intermediate fibers included in the analysis

Read more

Summary

Introduction

Reflectance spectroscopy is a non-invasive method that is widely used to measure tissue optical properties. Such information can characterize vascular physiology and tissue ultrastructure, factors that may have diagnostic value [1, 2, 3]. Reflectance intensities collected by optical devices with small source-detector separations contain contributions from non-diffuse photons, making the collected intensity dependent on both μs and the exact form of the PF [4, 5, 6, 7]. Failure to account for PF effects for small source-detector separations will introduce errors into optical property estimates. Previous investigations of light transport near the source [8, 9, 10, 11] utilized the Legendre moments of the PF to characterize the effect of large angle scattering events on the collected reflectance signal, introducing a parameter γ

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call