Abstract
In the standard photopyroelectric technique, a precise control of thermal coupling fluid between the solid sample and the sensor is sometimes difficult, and yet an important factor in sample characterization. In this paper, we propose a non-contact photopyroelectric configuration for thermal diffusivity measurement of solids by considering the phenomena of thermal wave interference. We adopted the thermal wave interferometry, which was extensively discussed by Bennett and Patty in the photoacoustic signal generation, to our photopyroelectric signal generation in a thermally thick condition for a nondestructive testing. A normalization procedure has been used to eliminate a number of media parameters of photopyroelectric cell that otherwise needed to be known before one can determine thermal diffusivity of the sample. The thermal diffusivities obtained for Al, Cu, and Ni samples were close to literature values and thus justified the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.