Abstract
The effect of thermal conductivity was studied on the composites prepared before and after reinforcement with different weight fractions (10, 20, 30, 40, 50, 60 wt %), using a Disc Lee's device, and the dispersion of the filler was studied by morphological analysis of the complexes using scanning electron microscopy (SEM). The (SEM) of glass composite powders, showed a smooth surface with a chance of forming very few voids, clusters and blisters on the surface of the sample, which increased with the increase of the weight fractions of the filled powder. While the composites filled with carbon powders show smooth and free from micro-cracks with the chance of formation of some flakes on the surface, whereby, as the weight concentrations of powders rise, transform to rough surface with micro-cracks and voids which revealing that the surface was porous. The results also showed that adding these powders to the epoxy resin has an effect on the thermal conductivity of the prepared composites, implying that there is a direct relationship between the thermal conductivity as a function of the weight ratios of the reinforcing materials, as the thermal conductivity values increase with the increase in the weight ratios for all samples, but differ from one reinforcement to another, with the highest value being at a weight ratio of (60 wt %), which raised the conductivity by (34.511%±0.031) and (26.488%±0.045) for glass and carbon composites, respectively, in comparison to pure epoxy resin. The results also revealed that the thermal conductivity of epoxy glass composites is greater than that of carbon composites at all reinforcing material weight fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Al-Bahir Journal for Engineering and Pure Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.