Abstract

Accurate neutron capture cross section data for minor actinides (MAs) are required to estimate the production and transmutation rates of MAs in light water reactors with a high burnup, critical fast reactors like Gen-IV systems and other innovative reactor systems such as accelerator driven systems (ADS). Capture reactions of244Cm open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf. In addition,244Cm shares nearly 50% of the total actinide decay heat in irradiated reactor fuels with a high burnup, even after three years of cooling.Experimental data for this isotope are very scarce due to the difficulties of providing isotopically enriched samples and because the high intrinsic activity of the samples requires the use of neutron facilities with high instantaneous flux. The only two previous experimental data sets for this neutron capture cross section have been obtained in 1969 using a nuclear explosion and, more recently, at J-PARC in 2010. The neutron capture cross sections have been measured at n_TOF with the same samples that the previous experiments in J-PARC. The samples were measured at n_TOF Experimental Area 2 (EAR-2) with three C6D6detectors and also in Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC). Preliminary results assessing the quality and limitations of these new experimental datasets are presented for the experiments in both areas. Preliminary yields of both measurements will be compared with evaluated libraries for the first time.

Highlights

  • Neutron capture cross section data for minor actinides (MAs) are required to calculate the transmutation and production rates of MAs in light-water reactors (LWR) with a high burnup, critical fast reactors like Gen-IV systems and accelerator driven systems (ADS) [1]

  • The same 240Pu(n,γ) and 244Cm(n,γ) cascades used for normalizing the Total Absorption Calorimeter (TAC) measurement were simulated in the C6D6 setup

  • The experimental yields obtained in both experimental areas have been compared with the yields obtained from the JEFF-3.3 cross sections using a n_TOF Experimental Area 2 (EAR-2) resolution function

Read more

Summary

Introduction

Neutron capture cross section data for minor actinides (MAs) are required to calculate the transmutation and production rates of MAs in light-water reactors (LWR) with a high burnup, critical fast reactors like Gen-IV systems and accelerator driven systems (ADS) [1]. Accurate measurements of these cross sections, are very difficult due to the high radioactivity of MAs and the difficulty to find appropriate samples. The 244Cm cross section has been measured at the n_TOF spallation neutron-time-of-flight facility at CERN.

The measurement in EAR-1 with the TAC
The measurement in EAR-2 with the C6D6
Results
Summary and conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call