Abstract

Measurements were carried out to deduce the transverse kinetic energies of highly charged argon recoil ions produced in single collisions of 120 MeV ions with argon atoms in which the post collision charge states of the projectiles were not determined. A time of flight spectrometer was designed and fabricated to detect the charge states of recoils. Experimental procedures for optimizing the spectrometer for extraction, transmission and detection of recoils are described. A simple approach for determining the transverse kinetic energy of the recoil ions from FWHM of the peaks is reported. This method is shown to be independent of the choice of collision partners and requires only the knowledge of the physical values of “optimized parameters” of time-of-flight spectrometer used in the experiment. The transverse kinetic energy of the recoil ions determined from the present approach is found to vary from 0.03 eV for to 4.02 eV for Ar10+. These values are compared with the results reported by earlier workers and are shown to follow a q2-behaviour up to a charge state q =8+ of the recoil ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.