Abstract

The components of the third‐order nonlinear optical susceptibility χ(3) for the 1002‐cm–1 mode of neat benzenethiol have been measured using coherent anti‐Stokes Raman scattering with continuous‐wave diode pump and Stokes lasers at 785.0 and 852.0 nm, respectively. Values of 2.8 ± 0.3 × 10–12, 2.0 ± 0.2 × 10–12, and 0.8 ± 0.1 × 10–12 cm·g–1·s2 were measured for the xxxx, xxyy, and xyyx components of |3χ(3)|, respectively. We have calculated these quantities using a microscopic model, reproducing the same qualitative trend. The Raman cross‐section σRS for the 1002‐cm–1 mode of neat benzenethiol has been determined to be 3.1 ± 0.6 × 10–29 cm2 per molecule. The polarization of the anti‐Stokes Raman scattering was found to be parallel to that of the pump laser, which implies negligible depolarization. The Raman linewidth (full‐width at half‐maximum) Γ was determined to be 2.4 ± 0.3 cm–1 using normal Stokes Raman scattering. The measured values of σRS and Γ yield a value of 2.1 ± 0.4 × 10–12 cm·g–1·s2 for the resonant component of 3χ(3). A value of 1.9 ± 0.9 × 10–12 cm·g–1·s2 has been deduced for the nonresonant component of 3χ(3). Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call