Abstract

The pulse method of measurement of the thermal diffusivity of cylindrical samples is considered: an optimum version of normalization of the geometric parameters of a heat pulse, the thicknesses of a cylinder to the radius, and significance of the length of a heat pulse are discussed. The method is realized on an automated experimental setup with simultaneous recording of a thermal signal and the shape and length of a laser pulse. Nonlinear effects are eliminated by decreasing the energy density on the front surface of the sample. The setup presented allows measurement of the thermal diffusivity within a wide range of its values with an error not exceeding 5%. The obtained results of the determination of the thermal diffusivity of Al, Cu, and Fe are presented in comparison with the literature data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.