Abstract

AbstractWe use magnetic field data from the Cluster mission to estimate the value of the Taylor microscale and the effective magnetic Reynolds number in the interplanetary solar wind. Turbulent cascades can be characterized by the spatial scale at which dissipation begins to impact the local energy transfer, estimated by the Taylor microscale, as well as the separation between the injection and dissipation scales, estimated by the effective magnetic Reynolds number. Estimating the Taylor microscale requires measurements of the autocorrelation function at small separations. The Cluster spacecraft have exceptionally sensitive search coil magnetometers with high time resolution, making them ideal for measuring the Taylor microscale. We obtain a value of km; smaller than most previous measurements. We interpret this value as being smaller due to the higher time resolution, enabling the curvature of the autocorrelation function to be measured closer to the origin, giving a more accurate measurement. Combining the Taylor Microscale's computed value with concurrent correlation length measurements, we obtain a value of for the effective magnetic Reynolds number, which compares well to other observations. The four spacecraft of Cluster also allow directions transverse to the flow to be surveyed. The small separations (7 km) of Clusters 3 and 4 show that the Taylor microscale may vary as a function of direction to the mean magnetic field direction. The observed differences are small, requiring more observations to confirm this anisotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.