Abstract
We report measurements of the spin polarization (\textbf{\textit{P}}) of the concentrated magnetic semiconductor EuS using both zero-field and Zeeman-split Andreev reflection spectroscopy (ARS) with EuS/Al planar junctions. The zero-field ARS spectra are well described by the modified (spin-polarized) BTK model with expected superconducting energy gap and actual measurement temperature (no additional spectral broadening). The fittings consistently yield \textbf{\textit{P}} close to 80% regardless of the barrier strength. Moreover, we performed ARS in the presence of a Zeeman-splitting of the quasiparticle density of states in Al. To describe the Zeeman-split ARS spectra, we develop a theoretical model which incorporates the solution to the Maki-Fulde equations into the modified BTK analysis. The method enables the determination of the magnitude as well as the sign of \textbf{\textit{P}} with ARS, and the results are consistent with those from the zero-field ARS. The experiments extend the utility of field-split superconducting spectroscopy from tunnel junctions to Andreev junctions of arbitrary barrier strengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.