Abstract

The specific heat capacities of un-irradiated and irradiated metallic Zr–40 wt%U fuel have been measured between 50 °C and 1000 °C with a differential scanning calorimetry. The irradiated fuels have three different burnup levels of 0.38, 0.70 and 0.92 g-fission product (FP)/cm 3. The measured specific heat for the un-irradiated fuel is representative and consistent with the values estimated from the Neumann–Kopp rule. The irradiated fuels exhibited a complicated behavior of the heat capacities. The unique characteristics of the specific heat capacities can be explained by the recovery of radiation damage, the formation of fission gas bubbles and fission gas release, and a phase transition in the irradiated fuels. An examination of the microstructure revealed that multiple large bubbles were formed in the irradiated fuel during specific heat measurement. The measured specific heat is expected to enable us to estimate the stored energy in the metallic fuel during certain accident scenarios and to determine the thermal conductivity of zirconium–uranium metallic fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.