Abstract

P-channel charge-coupled devices (CCDs) made from N-type silicon wafers were originally developed for ground-based optical and near-infrared telescopes. The thick depletion layer of these CCDs provides the significant advantage of high quantum efficiency (QE) for hard X-rays. On the other hand, high QE for soft X-rays is obtained with back-illuminated (BI) and fully depleted CCDs in which only a thin dead layer exists on the surface of incidence. Thus, P-channel BI CCDs can be applicable as superior wide band X-ray detectors. We have developed such a device specifically for the Soft X-ray Imager (SXI) on board the X-ray astronomy satellite ASTRO-H, scheduled to be launched in 2014. We previously reported that the depletion layers of our CCDs, a prototype of SXI-CCDs, have a thickness of more than 200μm. In this paper, we report a novel soft X-ray response of P-channel BI CCDs. First, we irradiate fluorescent X-rays of O, F, Na, Al, Si and K to the SXI prototype. This experiment reveals that our CCD has a significant low-energy tail structure in the soft X-ray response. Since the intensity of the low-energy tail is larger for lower X-ray energies, the tail is originated on the CCD surface layer. Then, we fabricate a new type of CCDs by applying an alternative treatment to its surface layer. The soft X-ray response of the CCD is measured by irradiation of monochromatic X-rays from 0.25keV to 1.8keV in a synchrotron facility, KEK-PF. The intensity of the low-energy tail for 0.5keV incident X-ray is one order of magnitude smaller than that for the previous CCD. The same treatment will be applied to the surface layer of the SXI flight model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.