Abstract

We have explored the shear plasticity of charge density waves (CDWs) in NbSe3 samples with cross sections having a single microfabricated thickness step. Shear stresses along the step result from thickness-dependent CDW pinning. For small thickness differences the CDW depins elastically at the volume average depinning field. For large thickness differences the thicker, more weakly pinned side depins first via plastic shear, and shear plasticity contributes substantial dissipation well above the depinning field. A simple model describes the qualitative features of our data and yields a value for the CDW's shear strength of approximately 9.5 x 10(3) Nm(-2). This value is orders of magnitude smaller than the CDW's longitudinal modulus but much larger than corresponding values for flux line lattices, and in part explains the relative coherence of the CDW response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call