Abstract

When measuring the shear modulus of wood by static bending tests, the basic theory is dependent on Timoshenko's bending theory. The shear modulus obtained by static bending is a much smaller value than that derived by other methods. We examined the applicability of Timoshenko's theory and propose an empirical equation that can derive the shear modulus properly. Three softwoods and three hardwoods were used for the tests. First, the Young's modulus and shear modulus were measured by free-free flexural vibration tests. Then the three-point static bending tests were undertaken, varying the depth/span ratios. Additionally, the bending tests were simulated by the finite element method (FEM). The shear moduli obtained by these methods were then compared. The deflection behaviors in static bending were not expressed by the original Timoshenko bending theory because of the stress distortion near the loading point. Based on the experimental results and numerical calculations, we modified the original Timoshenko bending equation. When using our modified equation the stress concentration must be carefully taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.