Abstract

ABSTRACTInelastic x-ray scattering measurements of the phonon density of states (DOS) of PuO2(+2%Ga) were made and compared to recent predictions from the literature made using three leading theoretical approaches; Density Functional Theory (DFT), DFT plus the Hubbard U (DFT+U), and Dynamical Mean-Field Theory (DMFT). The DFT prediction, which does not account for strong electronic correlations, underestimates the measured energies of most features. The DFT+U and DMFT predictions, which include approximations to strong correlation effects, more accurately reflect the low energy features but exaggerate splitting in the highest energy optic oxygen modes. The exaggeration of the splitting is worse for DFT+U than for DMFT. The transverse acoustic mode shows the least sensitivity to calculation type, and is well reproduced by all three theories. The longitudinal acoustic mode, which is thought to control the thermal conductivity, is more sensitive to calculation type, suggesting an important role for electronic correlations in making application-critical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.