Abstract

Fifty-six transitions from the K=1 lower→K=2 lower tunneling–rotation band of water dimer have been measured and assigned at 22 cm−1 by direct absorption spectroscopy in a cw planar supersonic jet expansion using a tunable far infrared laser spectrometer. Two different models were used to fit the data and several spectroscopic constants were determined for the upper and lower states. This work supports the local IAM model recently proposed by Coudert and Hougen for the hydrogen bond tunneling dynamics of the water dimer. This model includes four different tunneling motions, all of which contribute to the observed tunneling splittings. This is the most complicated hydrogen bonded system considered to be well understood at this time, at least in the lowest few K states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.