Abstract
New designs of cuff electrodes for the recording of signals from peripheral nerves are typically tested in acute animal experiments before long-term evaluation takes place. A reproducible, cost-effective and fast method is presented for evaluating cuff electrodes with respect to signal amplitude, noise rejection, and, in some cases, selectivity, as an alternative to acute in vivo experiments. Comparisons with a computer model and with signals obtained from rabbit tibial nerve give good agreement with the new method. It is shown that an imperfect closure of the cuff around the nerve can easily lead to more than 50% loss of the signal amplitude. Noise from sources external to the cuff is not significantly affected by the closing mechanism, but is strongly reduced by a tripolar cuff configuration as compared with a monopolar one (reduction factor 2.8 to 58, mean = 6.5, n = 6). In dual-channel cuffs, cross-talk is below 1.2% indicating a very high selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.