Abstract

In Saccharomyces cerevisiae, surface stresses acting on the cell wall or plasma membrane are detected by a group of five membrane sensors: Wsc1, Wsc2, Wsc3, Mid2 and Mtl2. Here we present protocols to measure the mechanical properties of Wsc1 sensors in their native cellular environment, using the combination of genetic manipulations with single-molecule atomic-force microscopy (AFM). We describe procedures (i) for obtaining genetically modified sensors that are fully functional and suitable for AFM analysis, i.e., elongated Wsc1 derivatives terminated with a His-tag, and (ii) for detecting and stretching single Wsc1 sensors on the surface of living S. cerevisiae cells, using AFM tips functionalized with Ni(2+)-NTA groups. These procedures are multidisciplinary to implement and need competent researchers from at least two disciplines: molecular biology and nanotechnology. For experienced researchers in biological AFM, the entire protocol can be completed in approximately 3 weeks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.