Abstract

We employ an $^{88}$Y/Be photoneutron source to derive the quenching factor for neutron-induced nuclear recoils in germanium, probing recoil energies from a few hundred eV$_{nr}$ to 8.5keV$_{nr}$. A comprehensive Monte Carlo simulation of our setup is compared to experimental data employing a Lindhard model with a free electronic energy loss $k$ and an adiabatic correction for sub-keV$_{nr}$ nuclear recoils. The best fit $k=0.179\pm 0.001$ obtained using a Monte Carlo Markov Chain (MCMC) ensemble sampler is in good agreement with previous measurements, confirming the adequacy of the Lindhard model to describe the stopping of few-keV ions in germanium crystals at a temperature of $\sim$77 K. This value of $k$ corresponds to a quenching factor of 13.7 % to 25.3 % for nuclear recoil energies between 0.3 keV$_{nr}$ and 8.5 keV$_{nr}$, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call