Abstract

During C4 photosynthesis, CO2 is released in bundle-sheath cells by decarboxylation of C4 acids and then refixed via ribulose-1,5-bisphosphate carboxylase. In this study we examined the efficiency of this process by determining the proportion of the released CO2 that diffuses back to mesophyll cells instead of being refixed. This leak of CO2 was assessed by determining the amount of 14CO2 released from leaves during a chase in high [12CO2] following a 70-s pulse in 14CO2. A computer-based analysis of the time-course curve for 14CO2 release indicated a first-order process and provided an estimate of the initial velocity of 14CO2 release from leaves. From this value and the net rate of photosynthesis determined from the 14CO2 fixed in the pulse, the CO2 leak rate from bundle-sheath cells (expressed as a percentage of the rate of CO2 production from C4 acids) could be deduced. For nine species of Gramineae representing the different subgroups of C4 plants and two NAD-malic enzyme-type dicotyledonous species, the CO2 leak ranged between 8 and 14%. However, very high CO2 leak rates (averaging about 27%) were recorded for two NADP-malic enzyme-type dicotyledonous species of Flaveria. The results are discussed in terms of the efficiency of C4 photosynthesis and observed quantum yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.