Abstract

Two-photon induced fluorescence of atomic oxygen, which is routinely used for plasma and flame diagnostics, is implemented with two counterpropagating laser beams of sufficient monochromaticity to permit Doppler-free spectroscopy. A single-mode injection-seeded pulsed Ti:sapphire laser has been frequency-doubled twice to produce narrow-band pulsed radiation at wavelengths around 225.6 nm, suitable to excite the ground-state-to- two-photon resonance line of oxygen. Accurate measurement of the injection-seeding wavelength provides new data on the excitation energy of the states. The experiment was done both sequentially and simultaneously on 16O and 18O, which makes it possible to test recent calculations of the isotope shift. Having an absolute measurement of the excitation wave-number from the ground level, which has been the case only twice in previous spectroscopic studies of O I, we can re-examine the energy levels of the subset of triplet states and present an updated set of optimised energy values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.