Abstract

The hydrophobic attraction describes the well-known tendency for nonpolar molecules and surfaces to agglomerate in water, controlled by the reorganization of intervening water molecules to minimize disruption to their hydrogen bonding network. Measurements of the attraction between chemically hydrophobised solid surfaces have reported ranges varying from tens to hundreds of nanometers, all attributed to hydrophobic forces. Here, by studying the interaction between two hydrophobic oil drops in water under well-controlled conditions where all known surface forces are suppressed, we observe only a strong, short-ranged attraction with an exponential decay length of 0.30 ± 0.03 nm-comparable to molecular correlations of water molecules. This attraction is implicated in a range of fundamental phenomena from self-assembled monolayer formation to the action of membrane proteins and nonstick surface coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.