Abstract

Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The ($n,\gamma$) cross section on $^{70}$Ge, which is mainly produced in the $s$~process, was measured at the neutron time-of-flight facility n_TOF at CERN. Resonance capture kernels were determined up to 40~keV neutron energy, and average cross sections up to 300~keV. Stellar cross sections were calculated from $kT=5$~keV to $kT=100$ keV and are in very good agreement with a previous measurement by Walter and Beer (1985), and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while being systematically smaller for neutron energies above 150~keV. We have calculated isotopic abundances produced in $s$-process environments in a 25 solar mass star for two initial metallicities (below solar, and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances the close to solar model shows a good global match to solar system abundances between mass numbers A=60-80.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.