Abstract

To experimentally measure the complicated vibration and wave characteristics of a shell, a 3D scanning laser Doppler vibrometer is a competent but costly instrument due to the requirement of exactly aligning each point when scanning the shell. Here we propose a simplified measuring method just by utilizing a single-point laser vibrometer fixed on a motorized positioning system. The clamp can be rotated to adjust the incident angles and translated to capture the whole tested region. During each test in a specific incident angle, the signals are interpolated to generate a continuous wave field in both the time domain and the frequency domain, eliminating the need for alignment. The in-plane and out-of-plane wave fields are obtained from the measured 3D signal using the projection relationship, and then verified both experimentally and numerically. Furthermore, we show that the present method can be used to test complex wave fields, such as the scattering field by obstacles on a cylindrical shell. The present work may stimulate systematically experimental studies on the wave propagation and vibration on shells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.