Abstract

A technique, using the Brazilian disk specimen, for measuring the fracture toughness of unidirectional fiber-reinforced composites, over the entire range of crack-tip mode mixities, was developed. The fracture toughness of a graphite/epoxy fiber-reinforced composite was measured, under both mode-I and mode-II loading conditions. We found that for certain material orientations the mode-II fracture toughness is substantially higher than the mode-I toughness. The complete dependence of the fracture toughness on the crack-tip mixity was determined for particular material orientations and the phenomenological fracture toughness curves were constructed. Using the Brazilian disk specimen, together with a hydraulic testing machine, the fracture toughness of the composite under moderate loading rates was measured. We observed that the mode-I fracture toughness was not sensitive to the loading rate at the crack tip, K, while the mode-II ‘dynamic’ fracture toughness increased approximately 50 percent over the quasi-static fracture toughness. A qualitative explanation of the dependency of fracture toughness on crack-tip loading rate is discussed. Finally, a mechanical fracture criterion, at the microscopic level, which governs the crack initiation under mixed-mode loading conditions is presented; these theoretical predictions closely follow the trend of experimental measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.