Abstract
An optical vortex beam carrying fractional topological charge (TC) has become an immerging field of interest due to its unique intensity distribution and fractional phase front in a transverse plane. Potential applications include micro-particle manipulation, optical communication, quantum information processing, optical encryption, and optical imaging. In these applications, it is necessary to know the correct information of the orbital angular momentum, which is related to the fractional TC of the beam. Therefore, the accurate measurement of fractional TC is an important issue. In this study, we demonstrate a simple technique to measure the fractional TC of an optical vortex with a resolution of 0.05 using a spiral interferometer and fork-shaped interference patterns. We further show that the proposed technique provides satisfactory results in cases of low to moderate atmospheric turbulences, which has relevance in free-space optical communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.