Abstract

An in-situ measurement technique to determine the rheology of a fluid based on the experimentally measured velocity profile of a flow in a mini-channel is introduced. The velocity profiles of a Newtonian and different shear-thinning fluids along a rectangular channel were measured using shadowgraph particle image velocimetry (PIV). Deionized water and different concentrations of a polyacrylamide solution were used as Newtonian and shear-thinning fluids, respectively and were studied at different Reynolds numbers. The flow indices of the fluids were determined by comparing the experimental velocity profile measurements with developed theory that takes into account the non-Newtonian nature of the fluids rheology. The results indicated that the non-Newtonian behavior of the shear-thinning fluid intensified at lower Reynolds numbers and it behaved more as a Newtonian fluid as the Reynolds number increased. A comparison between the power law index determined from experimental monitoring of the velocity profile at different Reynolds numbers and measurements from a rheometer reflected good agreement. The results from the study validate the new approach of the rheology measurement of Newtonian and non-Newtonian flows through straight, rectangular cross-section channels. The proposed approach can be further utilized using other methods such as X-ray PIV to characterize the rheology of non-transparent fluids and in general, for all non-Newtonian fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call