Abstract

High resolution x-ray diffraction has been used to investigate the structural properties of InxGa1−xAs epitaxial layers grown under tension on InP(100) substrates. The nominal indium composition (x=0.42) corresponds to a small lattice mismatch and a two dimensional growth mode. We have also included for comparison two samples grown under compression covering the mostly strained and the mostly relaxed regimes. Our results show that the residual strain and the asymmetry in strain relaxation along 〈011〉 directions are always larger for layers under tension. This can be explained by the difference in dislocation glide velocity induced by a different indium content, by the dissociation of perfect dislocations and partially by the difference in thermal expansion coefficients between substrate and epilayer. The larger asymmetry in strain relaxation for tensile strain layers is interpreted by the existence of microcracks aligned in the [011] direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.