Abstract

The aim of this study was to determine the end-to-end distance changes in anterior cruciate ligament (ACL) fibers during flexion/extension and internal/external rotation of the knee. The positional relation between the femur and tibia of 10 knees was digitized on a robotic system during flexion/extension and with an internal/external rotational torque (5 Nm). The ACL insertion site data, acquired by 3-dimensional scanning, were superimposed on the positional data. The end-to-end distances of 5 representative points on the femoral and tibial insertion sites of the ACL were calculated. The end-to-end distances of all representative points except the most anterior points were longest at full extension and shortest at 90°. The distances of the anteromedial (AM) and posterolateral (PL) bundles were 37.2 ± 2.1 mm and 27.5 ± 2.8 mm, respectively, at full extension and 34.7 ± 2.4 mm and 20.7 ± 2.3 mm, respectively, at 90°. Only 4 knees had an isometric point, which was 1 of the 3 anterior points. Under an internal torque, both bundles became longer with statistical meaning at all flexion angles (P = .005). The end-to-end distances of all points became longest with internal torque at full extension and shortest with an external torque at 90°. Only 4 of 10 specimens had an isometric point at a variable anterior point. The end-to-end distances of the AM and PL bundles were longer in extension and shorter in flexion. The nonisometric tendency of the ACL and the end-to-end distance change during knee flexion/extension and internal/external rotation should be considered during ACL reconstruction to avoid overconstraint of the graft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call