Abstract
Cell electrophoretic mobility (EPM) can be used to characterize individual cells. The purpose of this study is to establish reproducible and reliable cell EPM values obtained using microcapillary electrophoresis (microCE) chips. We studied cell electrophoresis on microCE chips through the comprehensive measurement of EPM and zeta potential. The inner wall of microchannels in microCE chips was coated with three kinds of reagents, namely bovine serum albumin (BSA), gelatin, and 2-methacryloyloxyethylphosphorylcholine (MPC) polymer to prevent nonspecific adhesion and interaction between cells and the inner wall. Electrophoresis was conducted in phosphate-buffered saline (pH 4-9) using erythrocytes extracted from sheep whole blood. Electroosmotic flow (EOF) mobility was measured using noncharged particles, and then the true EPM was calculated by subtracting the EOF mobility from the electromigration. MPC polymer coatings in microCE chips reduced the zeta potential of the inner wall and fully prevented nonspecific adhesion. EPM data obtained using microCE chips were almost the same and reproducible over a wide range of pH irrespective of the coating reagent used. In conclusion, reliability in the measurement of cell EPM using microCE chips was realized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.