Abstract

The characterization of the polarimetric properties of the planet Earth is important for the interpretation of expected observations and the planning of future instruments. We present a multi-wavelengths and multi-phase set of benchmark values for the polarization signal of the integrated light from the planet Earth derived from new polarimetric observations of the earthshine back-scattered from the Moon's dark side. Using a new, specially designed wide field polarimeter we measured the fractional polarization of the earthshine in the B, V, R and I filters for Earth phase angles alpha between 30{\deg} and 110{\deg}. The phase dependence of the earthshine polarization is fitted by a function p x sin(alpha)^2. To determine the polarization of the planet Earth we correct our earthshine measurements by a polarization efficiency function for the lunar surface derived from measurements of lunar samples from the literature. The polarization of the earthshine decreases towards longer wavelengths and is about a factor 1.3 lower for the higher albedo highlands. For mare regions the measured maximum polarization is about 13 % at quadrature in the B band. The resulting fractional polarizations for Earth are 24.6 % for the B band, 19.1 % for the V band, 13.5 % for the R band, and 8.3 % for the I band. Together with literature values for the spectral reflectivity of Earth we obtain a contrast between the polarized flux of the Earth and the (total) flux of the Sun with an uncertainty of less than 20 % and we find that the best phase to detect an Earth twin is around an Earth phase alpha=65{\deg}. The polarimetric models of Earth-like planets from Stam (2008) are in qualitative agreement with our results but there are also significant differences which might guide more detailed computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.