Abstract

We study the quadrupole oscillation of a Bose-Einstein condensate of 87Rb atoms confined in an axisymmetric magnetic trap, after it has been stirred by an auxiliary laser beam. The stirring may lead to the nucleation of one or more vortices, whose presence is revealed unambiguously by the precession of the axes of the quadrupolar mode. For a stirring frequency Omega below the single vortex nucleation threshold Omega(c), no measurable precession occurs. Just above Omega(c), the angular momentum deduced from the precession is approximately Planck's over 2pi. For stirring frequencies above Omega(c) the angular momentum is a smooth and increasing function of Omega, until an angular frequency is reached at which the vortex lattice disappears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.